
How-To: Create Charts in Jaspersoft Studio

Earlier people had to rely on scriptlets to gather the chart data and render the chart using

an image element in the report template. JasperReports makes it simple now, as it has
a built-in support for charts using the new chart component.

Using a new chart component, user needs to apply only the visual settings and define
expressions that will help build the chart dataset. JasperReports uses JFreeChart as the

underlying charting library. When configuring a new chart component, following three
components are involved −

• The overall chart component.

• The chart dataset (which groups chart data-related settings).

• The chart plot (which groups visual settings related to the way the chart items are
rendered).

JasperReports currently supports the following types of charts: Pie, Pie 3D, Bar, Bar 3D,
XY Bar, Stacked Bar, Stacked Bar 3D, Line, XY Line, Area, XY Area, Stacked Area,

Scatter, Bubble, Time Series, High-Low-Open-Close, Candlestick, Multiple Axis, Meter,
Thermometer, and Gantt.

Chart Properties

Charts are normal report elements, so they share some of their properties with all the

other report elements. There is a JRXML element called <chart>, used to create all type
of charts. This element groups special chart-specific settings that apply to all types of
charts.

Chart Sub-Elements

The sub-elements of <chart> element are −

• <reportElement> − These are displayable objects like static texts, text fields,

images, lines, and rectangles that you put in your report template sections.

• <Box> − This element is used to surround charts by a border that's customizable
on each side.

• <chartTitle> − This element is used to place the title of the chart.

The position attribute decides the title position of the chart in the report. This
element has attributes - Position (Values could be Top, Bottom, Left, Right.
Deafult value is Top), color. <chartTitle> has font and titleExpression as
subelements.

• <chartSubtitle> − This element is used to place the subtitle of the chart. This
element has attribute - color. <chartSubtitle> has font and subtitleExpression as
subelements.

• <chartLegend> − The element can control the font-related properties as well as
the text color and the background color of the chart legend using this element.
This element has attributes - textColor and backgroundColor.

• <anchorNameExpression> − This element creates the target for the anchor.

• <hyperlinkReferenceExpression> − This element contains a report expression
indicating the name of the external resource (usually a URL).

• <hyperlinkAnchorExpression> − Hyperlink points to an anchor in an external

resource.

• <hyperlinkPageExpression> − Hyperlink points to a page in the current report.

• <hyperlinkTooltipExpression> − This element controls the ToolTip of hyperlink.
The type of the expression should be java.lang.String.

• <hyperlinkParameter> − This element when present generates a final hyperlink
depending on the parameter values.

Chart attributes

Attributes in the <chart> element available for all chart types are −

• isShowLegend − This attribute is used to determine, if a chart legend will be
displayed on the report. Values could be true, or false. Default value is true.

• evaluationTime − Determines when the chart's expression will be evaluated.
Values could be Now, Report, Page, Column, Group, Band. Default value
is Now.

• evaluationGroup − This attribute determines the name of the group to be used

to evaluate the chart's expressions. The value for this attribute must match the
name of the group, we would like to use as the chart's evaluation group.

• hyperlinkType − This attribute can hold any text value. Default value is None.
This means, neither the text fields nor the images represent hyperlinks, even if

the special hyperlink expressions are present.

• hyperlinkTarget − This attribute helps to customize the behavior of the specified
link when it is clicked in the viewer. Values could be Self, or Blank. Default value
is Self.

• bookmarkLevel − This attribute when set to a positive integer, generates
bookmarks in the reports exported to PDF. Default value is 0.

• customizerClass − This is the name of a class (optional) that can be used to
customize the chart. The value for this element must be a String containing the

name of a customizer class.

Chart customization

As mentioned above, JasperReports uses JFreeChart as the underlying charting
library. JFreeChart contains features that are directly not supported by JasperReports.

We can take advantage of these features by supplying a customizer class via
the customizerClass attribute in <chart> element. A customizer class is nothing, but an
implementation of the net.sf.jasperreports.engine.JRChartCustomizer interface. The

easiest way to implement this interface is by extending
the net.sf.jasperreports.engine.JRAbstractChartCustomizer class and thus having
access to parameters, fields, and variables for more flexible chart customization based
on report data.

Chart Datasets

One of the common properties across all chart types is <dataset> element. Chart
datasets help mapping report data and retrieving chart data at runtime. Each chart type
contains different sub-elements to define chart's expressions. These expressions define

the data used to generate the chart. All of these sub-elements contain a <dataset>
element that defines when the chart's expressions are evaluated and reset.

Several types of chart datasets are available in JasperReports because each type of
chart works with certain datasets: Pie, Category, XY, Time Series, Time Period, XYZ,

and High-Low. Each of these dataset types
implements net.sf.jasperreports.engine.JRChartDataset interface that define chart
datasets. All chart datasets initialize and increment in the same way; however, they differ
only in the type of data or data series they map.

Dataset Properties

Table given below summarizes the attributes of the element <dataset> −

Attribute Description Values

resetType This attribute determines when the value

of the chart expression is to be reset.

None, Report, Page, Column, Group.

Default value is Report.

resetGroup This attribute determines the name of the

group at which the chart expression value

is reset.

The value for this attribute must match the

name of any group declared in the JRXML

report template.

incrementType This attribute determines when to

recalculate the value of the chart

expression.

None, Report, Page, Column, Group.

Default value is "None".

incrementGroup This attribute determines the name of the

group at which the chart expression is

recalculated.

The value for this attribute must match the

name of a group declared in the JRXML

report template.

The following table summarizes the sub-elements of the element <dataset> −

Sub element Description

<incrementWhenExpression> The way a chart dataset is incremented can be customized by filtering out

unwanted data through the use of this sub element.

<datasetRun> This contains information required to instantiate a report subdataset.

Dataset Types

Specific dataset types are explained below −

Pie Dataset

A pie dataset is characterized by the following expressions −

• <keyExpression> − represents the categories that will make up the slices in the
pie chart. This expression can return any java.lang.Comparable object.

• <valueExpression> − produces the values that correspond to each category/key
in the dataset. Values are always java.lang.Number objects.

• <labelExpression> − if this expression is missing, the chart will display default
labels for each slice in the pie chart. Use this expression, which returns

java.lang.String values, to customize the item labels for the pie chart.

• <sectionHyperlink> − sets hyperlinks associated with the pie sections.

Category Dataset

A category dataset is characterized by the <categorySeries> element, which contains −

• <seriesExpression> − indicates the name of the series. This expression can return
any java.lang.Comparable object.

• <categoryExpression> − returns the name of the category for each value inside
the series specified by the series expression. Categories are
java.lang.Comparable objects.

• <valueExpression> − produces the values that correspond to each category in the

dataset. Values are always java.lang.Number objects.

• <labelExpression> − if this expression is missing, the chart will display default
labels for each item in the chart. Use this expression, which returns
java.lang.String values, to customize the item labels for the chart.

• <itemHyperlink> − sets hyperlinks associated with chart items.

XY Dataset

An XY dataset is characterized by the <xySeries> element, which contains −

• <seriesExpression> − indicates the name of the series. This expression can return
any java.lang.Comparable object.

• <xValueExpression> − returns the java.lang.Number value representing the X
value from the (x, y) pair that will be added to the current data series.

• <yValueExpression> − returns the java.lang.Number value representing the Y
value from the (x, y) pair that will be added to the current data series.

• <labelExpression> − if this expression is missing, the chart will display default
labels for each item in the chart. Use this expression, which returns
java.lang.String values, to customize the item labels for the chart.

• <itemHyperlink> − sets hyperlinks associated with the chart items.

XYZ Dataset

An XYZ dataset is characterized by the <xyzSeries> element, which contains −

• <seriesExpression> − indicates the name of the series. This expression can return
any java.lang.Comparable object.

• <xValueExpression> − returns the java.lang.Number value representing the X
value from the (x, y, z) item that will be added to the current data series.

• <yValueExpression> − returns the java.lang.Number value representing the Y
value from the (x, y, z) item that will be added to the current data series.

• <zValueExpression> − returns the java.lang.Number value representing the Z
value from the (x, y, z) item that will be added to the current data series.

• <labelExpression> − if this expression is missing, the chart will display default

labels for each item in the chart. Use this expression, which returns
java.lang.String values, to customize the item labels for the chart.

• <itemHyperlink> − sets hyperlinks associated with the chart items.

Time Series Dataset

A time series dataset is characterized by the timePeriod attribute, and the <timeSeries>
element. The timePeriod attribute specifies the type of the data series inside the dataset.
Time series can contain numeric values associated with days, months, years, or other
predefined time periods. Possible values are: Year, Quarter, Month, Week, Day - this is
the default value, Hour, Minute, Second, Millisecond.

The <timeSeries> element contains −

• <seriesExpression> − indicates the name of the series. This expression can return
any java.lang.Comparable object.

• <timePeriodExpression> − returns a java.util.Date value from which the engine
will extract the corresponding time period depending on the value set for the
timePeriod attribute mentioned above.

• <valueExpression> − returns the java.lang.Number value to associate with the

corresponding time period value when incrementing the current series of the
dataset.

• <labelExpression> − if this expression is missing, the chart will display default
labels for each item in the chart. Use this expression, which returns

java.lang.String values, to customize the item labels for the chart.

• <itemHyperlink> − sets hyperlinks associated with the chart items.

Time Period Dataset

A time period dataset is characterized by the <timePeriodSeries> element, which
contains −

• <seriesExpression> − indicates the name of the series. This expression can return

any java.lang.Comparable object.

• <startDateExpression> − specifies the beginning of the date interval with which
the numeric value will be associated when it is added to the time period series.

• <endDateExpression> − specifies the end of the date interval with which the

numeric value will be associated when it is added to the time period series.

• <valueExpression> − returns the java.lang.Number value to associate with the
current date interval specified by the start date and end date expressions.

• <labelExpression> − if this expression is missing, the chart will display default

labels for each item in the chart. Use this expression, which returns
java.lang.String values, to customize the item labels for the chart.

• <itemHyperlink> − sets hyperlinks associated with the chart items.

High Low Dataset

A high low dataset is characterized by the following expressions −

• <seriesExpression> − currently, only one series is supported inside a High-Low or

Candlestick chart. However, this single series must be identified by a
java.lang.Comparable value returned by this expression, and it must also be used
as the series name in the chart's legend.

• <dateExpression> − returns the date to which the current (high, low, open, close,

volume) item refers.

• <highExpression> − returns a java.lang.Number value, which will be part of the
data item added to the series when the dataset gets incremented.

• <lowExpression> − returns a java.lang.Number value, which will be part of the

data item added to the series when the dataset gets incremented.

• <openExpression> − returns a java.lang.Number value, which will be part of the
data item added to the series when the dataset gets incremented.

• <closeExpression> − returns a java.lang.Number value, which will be part of the

data item added to the series when the dataset gets incremented.

• <volumeExpression> − a numeric expression that returns the volume value to use
for the current data item. It is used only for Candlestick charts.

• <itemHyperlink> − sets hyperlinks associated with the chart items.

Value Dataset

This is a special chart dataset implementation that contains a single value and is used
for rendering Meter and Thermometer charts. The value is collected using the
<valueExpression> expression.

Chart Plots

Another common JRXML element through all chart types is the <plot> element. This

allows us to define several of chart's characteristics like orientation and background
color. Plots differ, based on the type of chart.

Plot Attribute

The table given below summarizes the attributes of <plot> element −

Attribute Description Values

backcolor This attribute defines the chart's

background color.

Any six digit hexadecimal value is a valid

value for this attribute. The hexadecimal

value must be preceded by a #.

orientation This attribute defines the chart's

orientation.

Horizontal,Vertical Default value is "Vertical"

backgroundAlpha This attribute defines the transparency of

the chart's background color.

The valid values for this attribute include

any decimal number between 0 and 1,

inclusive. The higher the number, the less

transparent the background will be. Default

value is "1."

foregroundAlpha This attribute defines the transparency of

the chart's foreground colors.

The valid values for this attribute include

any decimal number between 0 and 1,

inclusive. The higher the number, the less

transparent the background will be. Default

value is "1."

labelRotation This attribute allows rotation of text

labels on x-axis to rotate clockwise or

anti-clockwise. This attribute applies only

to charts for which the x axis is not

numeric or does not display dates.

Default value is "0.0."

The <plot> element has a subelement <seriesColor> which attributes
are: seriesOrder and color. This element customizes colors for series, and their position
within in the color sequence.

Specific Settings for Chart Plots

• piePlot − It has no specific settings

• pie3DPlot − Contains the depthFactor attribute, a numeric value ranging from 0
to 1 that represents the depth of the pie as a percentage of the height of the plot

area.

• barPlot − One can show or hide tick labels, tick marks or item labels, and provides
settings for both axis.

• bar3DPlot − Provides the same settings as the barPlot, and generates a 3D effect

using the xOffset and yOffset attributes.

• linePlot − One can show or hide lines connecting item points, can show or hide
shapes associated with item points, and provides settings for both axis.

• scatterPlot − Similar to the linePlot, it can show or hide lines connecting item

points, can show or hide shapes associated with item points, and provides
settings for both axis.

• areaPlot − Provides settings for both axis.

• bubblePlot − One can set the bubble dimensions by setting the scaleType
attribute, and provides settings for both axis.

• timeSeriesPlot − One can show or hide lines connecting item points, can show
or hide shapes associated with item points, and provides settings for both axis.

• highLowPlot − One can show or hide open ticks, can show or hide close ticks,
and provides settings for both axis.

• candlestickPlot − One can show or hide the volume, and provides settings for

both axis.

• meterPlot − Contains specific settings for the dial shape, scale angle,
measurement units, tick interval, dial color, needle color, tick color, value display
font, color and format pattern, data range, and meter intervals.

• thermometerPlot − Contains specific settings for the value location, mercury
color, show/hide value lines, value display font, color and format pattern, data
range, low range, medium range, and high range.

• multiAxisChart − Contains specific settings for axis included in the plot.

Types of Charts

JasperReports offers built-in support for several chart types. They are listed as below −

• pieChart − A combination of a Pie dataset and a Pie plot.

• pie3DChart − Groups a Pie dataset and a Pie 3D plot.

• barChart − A basic combination of a Category dataset and a Bar plot.

• bar3DChart − Wraps a Category dataset and a Bar 3D plot.

• xyBarChart − Supports Time Period datasets, Time Series datasets, and XY
datasets, and uses a Bar plot to render the axis and the items.

• stackedBarChart − Uses data from a Category dataset and renders its content
using a Bar plot.

• stackedBar3DChart − Uses data from a Category dataset and renders its content
using a Bar 3D plot.

• lineChart − Groups a Category dataset and a Line plot.

• xyLineChart − Groups an XY dataset and a Line plot.

• areaChart − Items from a Category dataset are rendered using an Area plot.

• stackedAreaChart − Items from a Category dataset are rendered using an Area

plot.

• xyAreaChart − Uses data from an XY dataset and renders it through an Area plot.

• scatterChart − Wraps an XY dataset with a Scatter plot.

• bubbleChart − Combines an XYZ dataset with a Bubble plot.

• timeSeriesChart − Groups a Time Series dataset and a Time Series plot.

• highLowChart − A combination of a High-Low dataset and a High-Low plot.

• candlestickChart − Uses data from a High-Low dataset but with a special
Candlestick plot.

• meterChart − Displays a single value from a Value dataset on a dial, using

rendering options from a Meter plot.

• thermometerChart − Displays the single value in a Value dataset using rendering
options from a Thermometer plot.

• multiAxisChart − Contains multiple range axes, all sharing a common domain

axis.

Example

To demonstrate the charts, let's write a new report template
(jasper_report_template.jrxml). Here, we will add the <barChart> element to the

<pageHeader> section and <pieChart> to <summary> section. We would be displaying
in charts the marks obtained for each subject. Save it to the
directory C:\tools\jasperreports-5.0.1\test. The contents of the file are as given below
−

<?xml version = "1.0" encoding = "UTF-8"?>

<jasperReport xmlns =

"http://jasperreports.sourceforge.net/jasperreports"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation =

"http://jasperreports.sourceforge.net/jasperreports

 http://jasperreports.sourceforge.net/xsd/jasperreport.xsd"

 name = "jasper_report_template" pageWidth = "595" pageHeight =

"860"

 columnWidth = "515" leftMargin = "40" rightMargin = "40"

 topMargin = "50" bottomMargin = "50">

 <field name = "subjectName" class = "java.lang.String"/>

 <field name = "marks" class = "java.lang.Integer"/>

 <variable name = "countNumber" class = "java.lang.Integer"

calculation = "Count">

 <variableExpression>

 <![CDATA[Boolean.TRUE]]>

 </variableExpression>

 </variable>

 <background>

 <band splitType = "Stretch"/>

 </background>

 <title>

 <band height = "79" splitType = "Stretch"/>

 </title>

 <pageHeader>

 <band height = "200">

 <barChart>

 <chart evaluationTime = "Report">

 <reportElement x = "0" y = "0" width = "555" height

= "200"/>

 <chartTitle>

 <titleExpression>

 <![CDATA["My First JR Bar Chart"]]>

 </titleExpression>

 </chartTitle>

 </chart>

 <categoryDataset>

 <dataset incrementType = "None"/>

 <categorySeries>

 <seriesExpression>

 <![CDATA[$F{subjectName}]]>

 </seriesExpression>

 <categoryExpression>

 <![CDATA[$F{subjectName}]]>

 </categoryExpression>

 <valueExpression>

 <![CDATA[$F{marks}]]>

 </valueExpression>

 </categorySeries>

 </categoryDataset>

 <barPlot isShowTickMarks = "false">

 <plot/>

 </barPlot>

 </barChart>

 </band>

 </pageHeader>

 <columnHeader>

 <band height = "20" splitType = "Stretch"/>

 </columnHeader>

 <detail>

 <band height = "20" splitType = "Stretch"/>

 </detail>

 <columnFooter>

 <band height = "20" splitType = "Stretch"/>

 </columnFooter>

 <pageFooter>

 <band height = "20" splitType = "Stretch"/>

 </pageFooter>

 <summary>

 <band height = "400" splitType = "Stretch">

 <pieChart>

 <chart evaluationTime = "Report">

 <reportElement x = "135" y = "0" width = "270"

height = "300"/>

 <chartTitle>

 <titleExpression>

 <![CDATA["My First JR Pie Chart"]]>

 </titleExpression>

 </chartTitle>

 </chart>

 <pieDataset>

 <dataset incrementType = "None"/>

 <keyExpression>

 <![CDATA[$F{subjectName}]]>

 </keyExpression>

 <valueExpression>

 <![CDATA[$F{marks}]]>

 </valueExpression>

 </pieDataset>

 <piePlot>

 <plot/>

 <itemLabel/>

 </piePlot>

 </pieChart>

 </band>

 </summary>

</jasperReport>

The details of the above file are as given below −

• The JRXML element used to create a bar chart is </barChart> in the
<pageHeader>. It contains a </chart> sub-element, which contains a

<reportElement> sub-element defining the chart's dimensions and position.

• The <dataset> element in a bar chart must be enclosed between
<categoryDataset> and </categoryDataset> JRXML elements.

• <categoryDataset> must contain a <categorySeries> element. This element

defines what data element the bars will represent (subject names, in this
example).

• <categoryDataset> must also contain an element, which defines how the data will
be separated into categories for comparison. Here, data is separated by subject

names.

• The <valueExpression> element defines that what expression is used to
determine the value of each bar in the chart. Here, we are using "marks".

• For the pie chart, we have used the element <pieChart> under the <summary>

section. It contains a </chart> sub-element.

• The sub-element contains a report expression indicating what to use as a key in
the chart. Here, we have used subjectName.

• The sub-element contains an expression used to calculate the value for the key.

Here, we have used marks.

The java codes for report filling remains unchanged. The contents of the
file C:\tools\jasperreports-
5.0.1\test\src\com\tutorialspoint\JasperReportFill.java are as given below −

package com.tutorialspoint;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Map;

import net.sf.jasperreports.engine.JRException;

import net.sf.jasperreports.engine.JasperFillManager;

import net.sf.jasperreports.engine.data.JRBeanCollectionDataSource;

public class JasperReportFill {

 @SuppressWarnings("unchecked")

 public static void main(String[] args) {

 String sourceFileName =

 "C://tools/jasperreports-

5.0.1/test/jasper_report_template.jasper";

 DataBeanList DataBeanList = new DataBeanList();

 ArrayList<DataBean> dataList =

DataBeanList.getDataBeanList();

 JRBeanCollectionDataSource beanColDataSource = new

 JRBeanCollectionDataSource(dataList);

 Map parameters = new HashMap();

 try {

 JasperFillManager.fillReportToFile(sourceFileName,

 parameters, beanColDataSource);

 } catch (JRException e) {

 e.printStackTrace();

 }

 }

}

As we would be displaying the marks obtained for each subject, POJO needs to be
changed. The file C:\tools\jasperreports-
5.0.1\test\src\com\tutorialspoint\DataBean.java contents are as given below −

package com.tutorialspoint;

public class DataBean {

 private String subjectName;

 private Integer marks;

 public String getSubjectName() {

 return subjectName;

 }

 public void setSubjectName(String subjectName) {

 this.subjectName = subjectName;

 }

 public Integer getMarks() {

 return marks;

 }

 public void setMarks(Integer marks) {

 this.marks = marks;

 }

}

Even the contents of the file C:\tools\jasperreports-
5.0.1\test\src\com\tutorialspoint\DataBeanList.java need to be updated as given

below −

package com.tutorialspoint;

import java.util.ArrayList;

public class DataBeanList {

 public ArrayList<DataBean> getDataBeanList() {

 ArrayList<DataBean> dataBeanList = new ArrayList<DataBean>();

 dataBeanList.add(produce("English", 58));

 dataBeanList.add(produce("SocialStudies", 68));

 dataBeanList.add(produce("Maths", 38));

 dataBeanList.add(produce("Hindi", 88));

 dataBeanList.add(produce("Scince", 78));

 return dataBeanList;

 }

 /*

 * This method returns a DataBean object, with subjectName ,

 * and marks set in it.

 */

 private DataBean produce(String subjectName, Integer marks) {

 DataBean dataBean = new DataBean();

 dataBean.setSubjectName(subjectName);

 dataBean.setMarks(marks);

 return dataBean;

 }

}

Report Generation

Next, let's compile and execute the above files using our regular ANT build process. The
contents of the file build.xml (saved under directory C:\tools\jasperreports-5.0.1\test) are
as given below.

The import file - baseBuild.xml is picked up from the chapter Environment Setup and
should be placed in the same directory as the build.xml.

<?xml version = "1.0" encoding = "UTF-8"?>

<project name = "JasperReportTest" default = "viewFillReport"

basedir = ".">

 <import file = "baseBuild.xml" />

 <target name = "viewFillReport" depends =

"compile,compilereportdesing,run"

 description = "Launches the report viewer to preview the

 report stored in the .JRprint file.">

https://www.tutorialspoint.com/jasper_reports/jasper_environment_setup.htm

 <java classname = "net.sf.jasperreports.view.JasperViewer"

fork = "true">

 <arg value = "-F${file.name}.JRprint" />

 <classpath refid = "classpath" />

 </java>

 </target>

 <target name = "compilereportdesing" description = "Compiles the

JXML file and

 produces the .jasper file.">

 <taskdef name = "jrc" classname =

"net.sf.jasperreports.ant.JRAntCompileTask">

 <classpath refid = "classpath" />

 </taskdef>

 <jrc destdir = ".">

 <src>

 <fileset dir = ".">

 <include name = "*.jrxml" />

 </fileset>

 </src>

 <classpath refid = "classpath" />

 </jrc>

 </target>

</project>

Next, let's open command line window and go to the directory where build.xml is placed.
Finally, execute the command ant -Dmain-
class=com.tutorialspoint.JasperReportFill (viewFullReport is the default target) as

follows −

C:\tools\jasperreports-5.0.1\test>ant -Dmain-

class=com.tutorialspoint.JasperReportFill

Buildfile: C:\tools\jasperreports-5.0.1\test\build.xml

clean-sample:

 [delete] Deleting directory C:\tools\jasperreports-

5.0.1\test\classes

 [delete] Deleting: C:\tools\jasperreports-

5.0.1\test\jasper_report_template.jasper

 [delete] Deleting: C:\tools\jasperreports-

5.0.1\test\jasper_report_template.jrprint

compile:

 [mkdir] Created dir: C:\tools\jasperreports-5.0.1\test\classes

 [javac] C:\tools\jasperreports-5.0.1\test\baseBuild.xml:28:

 warning: 'includeantruntime' was not set, defaulting to bu

 [javac] Compiling 3 source files to C:\tools\jasperreports-

5.0.1\test\classes

compilereportdesing:

 [jrc] Compiling 1 report design files.

 [jrc] log4j:WARN No appenders could be found for logger

 (net.sf.jasperreports.engine.xml.JRXmlDigesterFactory).

 [jrc] log4j:WARN Please initialize the log4j system properly.

 [jrc] log4j:WARN See

http://logging.apache.org/log4j/1.2/faq.html#noconfig

 for more info.

 [jrc] File : C:\tools\jasperreports-

5.0.1\test\jasper_report_template.jrxml ... OK.

run:

 [echo] Runnin class : com.tutorialspoint.JasperReportFill

 [java] log4j:WARN No appenders could be found for logger

 (net.sf.jasperreports.extensions.ExtensionsEnvironment).

 [java] log4j:WARN Please initialize the log4j system properly.

viewFillReport:

 [java] log4j:WARN No appenders could be found for logger

 (net.sf.jasperreports.extensions.ExtensionsEnvironment).

 [java] log4j:WARN Please initialize the log4j system properly.

BUILD SUCCESSFUL

Total time: 19 minutes 45 seconds

As a result of above compilation, a JasperViewer window opens up as in the screen
below −

Here, we see that the bar chart is created in the pageheader and the pie chart is created
in the summary sections.

Courtesy: https://www.tutorialspoint.com/jasper_reports/jasper_creating_charts.htm

Modified: 2021.10.04.7.15.AM

Dököll Solutions, Inc.

https://www.tutorialspoint.com/jasper_reports/jasper_creating_charts.htm

